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Elevated-Temperature Creep Buckling of
Thermoplastic-Matrix Fiber Composites

under Biaxial Loading

Y. NAKAJO* ttND S. S. WANG**
Department of Mechanical and Industrial Engineering

University of Illinois
Urbana-Champaign, IL 61801

ABSTRACT: An analytical study has been conducted to investigate the elevated-
tempe:rature creep buckling behavior of thermoplastic-matrix composite laminates sub-
jected to multiaxial loading. Anisotropic time-temperature dependent viscoelastic consti-
tutive equations of the composite are constructed first, using the experimental results and
thL, modified Prony series expansion solution. Creep buckling loads and associated creep
failure times are determined by a time-dependent bifurcation buckling analysis of the ther-
mopl istic composite laminates under general loading in an elevated-temperature environ-
ment. Detailed solutions for high-temperature creep buckling and associated failure mode
shapes of the AS4/J1 thermoplastic composite laminates with various fiber orientations
are obtained. The creep buckling mode shape changes and the accompanying failure loads
are studied for three commonly encountered loading modes: (1) pure shear, (2) biaxial
compression with any arbitrary stress biaxiality ratios, and (3) combined axial compres-
sion and shear loading.

1. INTRODUCTION

H IGH-TEMPERATURE THERMOPLASTIC-MATRIX COMPOSITES are currently con-
sidered to be used in high-performance structures such as supersonic air-

craft. The advanced structural applications rzquire accurate analyses and clear
understanding of the failure behavior of structural elements at elevated tempera-
tures. Among various structural failure problems presently concerned, elevated-
temperature stability of thermoplastic-matrix composite panels under mt.1 tiaxial
loading is of significant interest not only because of its intrinsic complexities but
also because of its technical importance.
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The objectives of the present study are to introduce a proper mathematical
method to account for high-temperature constitutive properties of the composites
and to investigate fundamental creep buckling behavior of thermoplastic-matrix
composite panels under general multiaxial loading in elevated-temperature envi-
ronments.

The subject of creep buckling of structures has been studied by many research-
ers, and two conunon approaches have been taken. One is based on nonlinear
power law creep stress-strain constitutive equation, representative of constitutive
laws for most metal creep. Hoff [101 firstly proposes a rational criterion for this
type of creep failure by introducing a critical time (i.e., buckling time) at which
the initial imperfection grows to infinite amplitude. A brief history of this ap-
proach is introduced in Reference [I]. The other kind of creep buckling analysis
is the one used for structures with hereditary-integral-type viscoelastic material
constitutive equations. The definition of the critical time used in this approach
with small deflection theory gives an infinite-long buckling time, which ap-
parently contradicts to experimental results [12]. To alleviate this problem, for
example, Hilton defines [7] the creep buckling time of a column as the one at
which the deflection is of such a magnitude that the maximum moment in the col-
umn will reach the ultimate value the material can carry. Freudental [8] deter-
mines the critical time of a column by considering the divergence of successive
approximations for the lateral deflection in terms of a power series, involving the
applied load and time. The problem of creep buckling of a linear viscoelastic
material has been investigated widely from the view point of growth of an initial
imperfection [2,14,15,16]. Williams [4] and Powell [5] define the creep buckling
time of a viscoelastic column based on a bifurcation buckling criterion. Recently,
Wilson and Vinson [21] extend the viscoelastic linear buckling analysis to lami-
nated composite columns using the correspondence principle to obtain the criti-
cal time. It is well-known that a direct application of the bifurcation-type analysis
for creep buckling generally gives extremely modest estimation of the creep
buckling time [101, as compared with Hoff's approach. However, each of the
above analyses should give certain insights into the creep buckling failure be-
havior of high-temperature structures with different configurations.

In this research, a combined experimental and theoretical approach is taken to
analyze the creep buckling problem of a thermoplastic-matrix composite panel at
elevated temperatures. The experimental results obtained from accompanying
swdics [17,20.221 are used for material considerations. A recently developed
method with the aid of an optimization theory is introduced first to describe the
long-term anisotropic viscoelastic behavior of the composite. Accuracy and con-
vergence of the solutions are studied in detail. The well-known transform method
is then used to study the creep instability of the thermoplastic-matrix composite
panels with several different fiber orientations. Three loading modes are con-
sidered in the study: (1) pure shear, (2) biaxial compression of arbitrary biaxial
stress ratios, and (3) combined axial compression and shear loading. The results
obtained in this study provide important information to our understanding of the
elevated-temperature instability of the thermoplastic-matrix composite panel
under general loading modes.
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2. METHODS OF APPROACH

2.1 Anisotropic Viscoelastic Constitutive Equations
for Unidirectional Composites

In the development of analytical methods to study elevated-temperature creep
buckling behavior of a thermoplastic-matrix composite, time-temperature-
dependent constitutive equations of the composite must be determined first. In
this study, the anisotropic viscoelastic creep compliance data of a unidirectional
thermoplastic fiber composite obtained in the related studies [17,20,22] are used
for construction of material constitutive equations. The master curves of creep
compliances of the composite are determined by applying the time-temperature
equivalence principle. The transverse compliance J22 and .fae shear compliance
J66 of the composite are directly measured in the elevated-temperature creep ex-
periments. The time-temperature-dependent Pbisson's ratio v12 is determined by
the use of the rule of mixtures [1], based on the properties of neat matrix resin
and the fibers at different temperatures and by properly shifting the data to con-
struct the master curve. The longitudinal modulus is assumed to be temperature-
and time-independent.

The composite viscoelastic constitutive equations are expressed in the follow-
ing forms of Equations (2-1-1) and (2-1-2), for the thermoplastic matrix com-
posite.

n

J~i(T,t) = C°j(T) + d Cjk)(T) exp [tk(T)t] (2-1-1)
k=1

n

v1j(T,t) = D1 0 (T) + r Dk)(T) exp [ yk(T)t] (2-1-2)

where ,), Di), t, and "yk are coefficients dependent on the temperature and
fiber orientations.

To express the experimental data of the anisotropic composite properties by
proper analytical expressions, a sequential unconstrained minimization tech-
nique (SUMT) is used in this study. Details of the SUMT is given in Appendix
1. Curve fitting for a longer time range requires the introduction of several new
features in the solution procedure, including (1) use of sufficient number of terms,
(2) introduction of additional constraint conditions, and (3) selection of proner
initial values. The use of sufficient terms in Equation (2-1-I) is most essential
because the time range which one term can cover is limited only to a few decades
at most, and the regions near to both ends of the time range of interest need suffi-
cient terms. An accurate solution in the desired time range requires many terms
but, on the contrary, most of the terms are used to fit the end portions of the curve
(see Appendix 1). And very often the resolutions are lost because of the limit of
the precision in the calculation.
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Besides the original constraint for 1tk(t) due to physical feasibility, additional
constraint conditions are introduced not only to accelerate the convergence but
also to prevent the solution from having the oscillating feature, which sometimes
introduces a small error. Besides these additional conditions, the use of many
terms itself increases the number of constraint conditions

With increase in number of terms, proper selection of initial values becomes
difficult. The SUMT method is employed to solve the problem efficiently with
above three requirements. The procedure has demonstrated to minimize the d'is-
crepancies between experimental data and modified Prony series solution under
these constraint conditions.

2.2 Viscoelastic Composite Laminate Theory

Owing to the elevated temperature environment considered, viscoelastic com-
posite laminate theory needs to be used to analyze the creep buckling behavior of
thermoplastic-matrix composites with various ply orientations. Specifically, the
classical lamination theory is modified to include the viscoelastic composite con-
stitutive equations. The use of the well-known correspondence principle [4] facil-
itates the analytical procedure of the composite creep buckling analysis. In the
present study, only symmetric angle-ply composite laminates are considered. As
a result, in-plane and out-of-plane displacements are decoupled in the viscoelas-
tic composite plate equations [3].

Based on the correspondence principle, the elastic composite laminate theory
forms the basis of the viscoelastic composite analysis. Consequently one obtairs
the corresponding elastic governing equation for the deflection of the composite
plate:

a4w a4w d4w a4wD.. - + 4D. y + 2(DXY + 2D,,) + 4D y

+ DY, ay" + N., ax--- + N , - 2N, axy = 0a 4  a2  Y ayw axaw
(2-2-1)

where

n h

D, = 2 _2d 'E,_dz (a,3 = x, y,s) (2-2-2)
k= I hk-1

,LZ2 COS 4 0  
_____E _ ) E1 i sin 4 6

= + 2 + 2G66 sin' 0 cos' 0 + 1 s
EP 1121121 1 I - P 2P21 I - 12121

E 22 cos4 0 ( 12E 22  )+ 2G6 2 s 2 E,, sin 4 0
= 1+ 21 +2G66) 6os sin 06+

E ,1- 2 1 -- ( 21221 -11 )

(2-2-3)
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in which 0 is the off axis angle, and the numeric subscripts of the material proper-
ties denote those in material coordinates (Figure 2-2-1).

The solution for the above governing differential equation along with proper
B.C's of a given composite panel can be determined by various methods. The vis-
coelastic solution can then be derived, using the correspondence principle later.

2.3 Viscoelastic Creep Buckling Analysis of
Thermoplastic-Matrix Composite Laminates

In this study, Galerkin's method [3] is used to obtain the corresponding elastic
buckling solution. The elastic solution is then converted into viscoelastic solu-
tions by the correspondence principle which is technically the inverse Laplace
transformation of the elastic solution after replacing the compliances Jj with sJj
and the Poisson's ratio vPi with spij. By replacing the associated material proper-
ties, the elastic solution becomes identical to the viscoelastic solution in the La-
place domain, or s-domain. Hence, inverse Laplace [ransformation of the elastic
solution with the replaced material properties gives the viscoelastic solution in
the real time domain. The critical time of structural instability for a ther-
moplastic composite laminate with th - viscoelastic properties is subsequently
calculated from the, solution obtained by above referenced technique based on a
bifurcation buckling analyses of a composite laminate.

2.3.a THE GALERKINS METHOD
The lateral deflection wo, for a simply-supported retangular composite plate is

assumed as

2 2

W as C c, sin L-- sin L--l-- (2-3-1)
m=1 n=1l.,L

According to the well-known Galerkin's method, the following equations can be
obtained:

7r2 LL,,I N NY) 32
rL, L_ N- NY - (87r 2 S 1 + Ny)4 \ rF LX LY 9

= 0 (2-3-2a)

- 32 (27rS, + r L 47r2F, - N

7r2L,, N 4_N, 32
X2  - (2r$ 2, + N1,,)

4I) 9= 0 (2-3-2b)

- 32 (2r 2S1 + N,,) 2LL - NN1 )
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z

y

1~X1

Figure 2-2-1. Asymmetric composite laminates with [0,/0,/2/0,] fiber orientations under
general inplane compression and shear loading.

where

Sij = (i/L1 )2D, + (j/L,)2Dy,
Fij = (i/Lx) 4Dxx + 2(i/L,) 2 (j/LY) 2(Dy + 2D,,) + (j/L,)4DY

To solve for N,, NY, and N., each equation has to contain only one unknown. For
the pure shear case, the unknown is NxY and Nx = Ny = 0. For the case of com-
bined axial compression and shear or the biaxial compression, either one of the
two loads must be the unknown and the other must have a known value. In this
study, N, is chosen to be the unknown for the latter two cases, and the constant
values of other loads, i.e., N for the biaxial compression and Nx for the com-
bined axial compression and shear, are changed parametrically. By using the
Galerkin's method, the governing differential equation is discretized into simulta-
neous equations. For the assumed deflection Equation (2-3-1), the set of simulta-
neous equations is further divided into two sets of simultaneous equations (see
Appendix 5). The solution obtained from Equation (2-3-2a) has contribution of
two components in the assumed deflection which are expressed by m = 1, n =
1 and m = 2, n = 2 in Equation (2-3-1) shown in Figure 2-3-1. And the solution
from Equation (2-3-2b) has the ones which correspond to m = 1, n = 2 and
m = 2, n = 1. No other mode coupling exists except for those combinations.
The lowest load should be chosen among the four roots for each buckling load
obtained from Equations (2-3-2a) and (2-3-2b).
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2.3. b INVERSE LAPLACE TRANSFORMATION FOR
VISCOELASTIC CREEP BUCKLING

Once the elastic solution is obtained, the use of the correspondence principle
leads to the viscoelastic solution. For example, expanded explicit form of Equa-
tion (2-3-2b) for angle-ply laminates in VE domain are:

(2 2__ 136 272 257 64
7 4 . t32 [1 B + 16 B2 + 2 B 3 + B 4 + B58L2L6 , 4 4 4 4,

LX LXLY LXLY LXLY X1

256 256 136 272 16 B10

+ L 4L 4 B 6 L+ By + L+ L B9+ L-8

r2t 23(aNx N 2t 3 {N_2  4N,B- I r, 1
2 - 2( + 

(4 N) .N_ + 4 N)B1

(128 2 [4 (2 /) 2  + {)2 (1 4 17 B
ar)K[4 ' (-1 + 2 B14 + 4 BIs + L L B16

- t 2 2

+ 2r2 2 (B 1 7 + B, 8 )Ny + N.yBt = 0 (2-3-4)
2

where B, to B, 8 are time-dependent coefficients. The B, for example has the
form:

B, = sin' 010002 + 4 sin 4 0 cos4 0 1E 22 2 + 4E,,(10 1 21 1122,)

+ 4(10020 - 211,20 + 12220)1 + E, . cos' 010022

+ 4 cos 2 0 sin 6 0[E,,10 11 2 + 2/oo,, - 21,111

+ 4E,, cos 6 0 sin 2 0IE , I ,
122 + 210021 - 21112,1

+ 2E,, cos 4 0 sin 4 010012 (2-3-5)

in which

i,, 8-(,+j+k+) V.,.p 2 , J22 j (2-3-6)

Solutions for general angle-ply laminates including the degenerated cases of a
unidirectional composite by letting 0 = 0 and a cross-ply laminate are shown in
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the Appendices 2, 3 and 4. The inverse Laplace transformation, Equation
(2-3-6), can be calculated by the use of convolution integral. For example, the
1,22 term has the form

12222 = v,2(u)v,2(p - u)du P21(V2,(r - p - v)dvdp
0 0 0 0

x 0 J 2 2()J 22(q - )d 0 J 66 (0)J 6 6 (r - - q - i)drqdqdr

(2-3-7)

The mode shape change is also calculated by making use of the correspondence
principle. The ratios c,,/c 2 2 and c, 2/c 2, can be conveniently used to represent the
buckling modes. For example, c,,/c 2 2 for the angle-ply laminate is calculated
from the simultaneous equations (see Appendix 5) from which Equation (2-3-2a)
is obtained with a condition for nontrivial solution for c,, and c22 as

CI, 32 4 87r 2S, I + Ny- (2-3-8)
C2 9 2LL, r 2F,, - (N./L ) - (N,/LY)

He ,ce

C1 7r2 D + 2(Dy + 2D,) L- + Lj- L-

('2 9r 2 -2 1 8r 2  L + u), + NA = 0 (2-3-9)

Applying the correspondence principle, the above equation is transformed into
the real time domain as:

C11 [r 2 2 h2 (A%/oo,2 + A6 I0 22 + A7 10122 + A( 10021 - /1121))

+ N ,,,) -,4, 12+
2 + 2 )022~~ - 11122I -C 22 972L 87r2[ h1( - I + 2c.1)

(At,0012 - A210022 + A, 012 2 + A4 (1,,,, 1 - 11121))} + N,( - 11122 )]- 0

(2-3-10)

where A, to A, are constants (see Appendix 2). The equations to be solved for
other modes are shown in Appendix 5. The ratio of the amplitude c,, I/c22 can be
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calculated for the applied load by substituting the buckling time (for example 100
minutes in the present analysis) to determine the paraiieters lijk!,

3. RESULTS AND DISCUSSION

To illustrate the fundamental behavior of elevated-temperature creep buckling
of thermoplastic-matrix fiber composites, analytical solutions have been obtained
for a carbon fiber (AS4) reinforced polyamide (J1) matrix composite under
various in-plane, biaxial compression and/or shear loading. The AS4/JI ther-
moplastic matrix composite considered here has a glass-transition temperature
Tg =_ 293 0 F (145 0C). Anisotropic viscoelastic constitutive properties are deter-
mined by the use of the elevated-temperature experimental data. The elastic
modulus along fiber direction, E, is assumed to be time- and temperature-
independent with the value of 1.75 x 10' psi. Creep buckling behavior of the
unidirectional AS4/JI composite is studied first to provide a general reference for
the subsequent analysis of more complex, multilayered angle-ply and cross-ply
thermoplastic composite laminates.

For both cases of the unidirectional composite and multilayered laminates the
panels have dimensions, L, = 10 inch, and L, = 10 inch, and a uniform pl)
thickness h = 0.2 inch (Figure 2-2-1). Three multiaxial loading modes are con-
sidered: (a) pure shear loading, (b) combined axial compression and shear, and
(c) biaxial compression with arbitrary stress biaxiality ratios. For each case, a
schematic is shown in the respective figure. The nominal shear stress and the
nominal compressive stress in the v direction are changed parametrically in the
analyses for the cases (b) and (c), respectively. In all of the cases studied, creep
buckling loads, critical instability times, and associated buckling mode shapes of
the composite laminates under various combinations of in-plane biaxial compres-
sion and shear are determined for several temperatures. The degenerated solu-
tion, i.e., the thermoelastic buckling solution, for each case is also determined
and included here for the reference purpose.

3.1 Analytical Expression of Anisotropic
Viscoelastic Composite Constitutive Equations

In the use of the correspondence principle for studying the thermoplastic com-
posite constitutive equations, only the time dependency is taken into account.
The temperature effect can be introduced into the analyses by the time-tempera-
ture equivalence concept [191. Owing to the fact that the time dependency of the
composite results mainly from the matrix 1221, the time-temperature equivalence
is isotropic. Therefore the shift factor of the matrix can be used to relate any of
the solutions obtained in the present analysis at 145°C to that at a desired temper-
ature. While any solution at a given temperature can be shifted to that at a
different temperature, the expressions of the viscoelastic material properties in
the present analysis is valid only 16r the time range of five decades.

The numbers of terms used in the modilied Pronv series expansion ofJ 2.J,,,
and ',2 are determined otr the solutions within an admissible range of' approx-
imation. The present method can thcoretically give precise fitting for a long
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range by using increased number of terms. However, owing to the resolution of
numerical results, the use of many terms (e.g., n > 15) may now work out for
too long a time range. At present, the upper limit of the time range is 5 decades
in a a log scale, which can be shifted to another portion of the master curve. But
it is very difficult to expand to the range of more than 5 decades. Figure 3-1-5
shows the difficulties to extend the ends by adding additional terms. Sometimes
close values of the design variables f07s lead to the same local optimum value (see
Table 3-1-1). The more this happens, the greater the advantage of starting the op-
timization using many terms is lost. In the present analyses initial values are de-
termined by the next equation.

For 13,'s,

/3, g 1 - ' - (i = l,n) (3-1-1)

where 0 < g < 1, h << 1. For C,'s (after normalization),

Co= 1.2

C, = -0.01 (i = 1,n) (3-1-2)

The order in Tables 3-1-1 to 3-1-3 corresponds to the order of the initial values in
Equation (3-1-1).

Convergence of the series solution with different numbers of terms can be seen
from Figure 3-1-5 which shows the feature of each normalized term for represen-
tative /3, values in Equation (2-1-1). To extend the range to the direction of t = 0.

Table 3-1-1. Various terms in modified Prony series for composite creep

compliance J22 at T = 293°F (145 0C).
k rCk (psi-1)

v22 A

1 - 1.452100E - 07 - 2.514420E + O0
2 - 1.146764E-07 - 1.277711E +00
3 - 9.236675E - 08 - 7.365715E - 01
4 - 6.734417E - 08 - 3.161159E - 01
5 - 5.990098E - 08 - 1.569684E -01
6 - 6.721540E - 08 -8.364243E - 02

7 - 8.490632E - 08 - 4.535500E -02
8 - 1.027089E - 07 - 2.200023E - 02
9 - 1.134783E - 07 - 7.457791E -03
10 - 1.189835E - 07 - 6.627651E - 04
11 - 1.202688E - 07 - 1.065326E - 03

12 - 1.221522E - 07 - 1.602799E -04
13 - 1.227818E - 07 - 2.869180E -05
14 - 1.227750E - 07 - 2.869180E - 05
15 - 1.228800E - 07 - 2.869180E -05



Table 3-1-2. Various terms in modified Prony series for composite creep

compliance J6 at T = 293°F (145*C).
k r~k) (psi-') Ik

v66 A

1 - 2.003911E - 07 - 2.501196E + 00
2 - 1.658524E - 07 - 1.275838E + 00
3 - 1.454192E -07 -7.355021E -01
4 - 1.342051 E -07 -3.151077E - 01
5 - 1.507481 E - 07 - 1.553528E -01
6 - 1.900140E -07 -8.061813E -02
7 -2.433190E -07 -3.992683E -02
8 -2.891804E -07 - 1.451749E -02
9 - 3.089745E - 07 - 3.267287E - 03

10 - 3.123734E -07 - 1.370418E - 03
11 - 3.129629E - 07 - 5.621973E - 05
12 - 3.128881E -07 - 5.621973E - 05
13 - 3.126838E -07 - 5.621973E - 05
14 - 3.124806E - 07 - 7.796962E - 04
15 - 3.124339E -07 - 1.155590E - 03

Table 3-1-3. Various terms in modified Prony series for Poisson's ratio v12

at T = 293*F(145*C).

k D (k) 'Yk

1 - 1.015074E - 02 - 2.497946E + 00
2 - 6.755615E - 03 - 1.274916E + 00
3 - 5.396313E - 03 - 7.349936E - 01
4 -3.690511E-03 -3.148159E-01
5 - 2.069948E -03 - 1.554924E - 01
6 - 1.485730E -03 - 8.283169E - 02
7 - 4.751751E -03 - 4.716623E - 02
8 - 8.328338E -03 - 2.804054E - 02
9 - 1.099923E -02 - 1.586411E - 02

10 - 1.283541 E - 02 - 5.166782E - 03
11 - 1.510358E -02 - 4.046428E - 05
12 - 1.597748E - 02 - 3.410993E - 04
13 - 1.621792E -02 - 4.046428E - 05

185
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Fic ure 3-1-1. Shift factor vs temperature for AS4/ J1 thermoplastic-matrix composite [refer-
en "e temperature = 2930 F (145°C)].

th2 use of many terms with very small 3, values is necessary. To extend the-range
to the direction of t = oo, additional terms with very close 3, values are neces-
sary. In both cases, the resolution is easily lost by numerical errors during
ca culations. Also in this figure, it is apparent that a few terms used can cover
oniy 2 or 3 decades over a log time scale at most, which is independent of the
scheme of optimization or accuracy of calculation.

Figure 3-1-1 shows the relation between the temperature and the shift factor by

CI(T - To)
log aT = C2 + T - To(3-1-3)

wl'ich is sometimes referred to as the WFL equation [191. Values of the C, and
C2 ire experimentally determined constants. Tis a temperature and To is a refer-
ene temperature. Conventionally C, and C2 are obtainable by a graphical
method as a gradient and an intercept in the ( T - To)/Iog a, vs. T - To curve.
In the present data reduction, a least-square method is employed to obtain C, and
C,. When a glass transition temperature T, is used for T. it is known that C, and
C2 give approximately consistent values regardless of the material fbr the temper-
ature range T = T, - 50'C to T = T + 50 0 C. The C, and C2 values obtained
from our experimental results differ from those conisistent values [191.
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Figure 3-1-2. High-temperature creep experimental data and the modified Prony series
solution for AS4/J1 thermoplastic composite at T = 293 0 F (145 0 C).
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F gure 3-1-3. High-temperature creep experimental data and the modified Prony series
s 'lution for AS41JI thermoplastic composite at T = 293 0F (145 0C).
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Modified Prony Series (Eq.2-1-2)
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Figure 3-1-4. High temperature creep experimental data and the modified Prony series
soution for AS4/ J7 thermoplastic composite at T = 2930F (1450C).
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Figure 3-1-5. Each normalized term for representative 13, values in Equation (2-1-1).

2.2 Creep Buckling of Unidirectional Thermoplastic-Matrix Composites

5 ".a PURE SHEAR LOADING
As a reference for studying the elevated-temperature creep buckling of more

complex composite laminates, thermal elastic buckling of a unidirectional com-
posite panel, i.e., r* 2 = r,1 (0. T,) is introduced first. The ,-*j2 in Figure 3-2-1
is the elastic bifurcation buckling load calculated with the composite ther-
moelastic properties at the glass transition temperature T = 145 'C. The value of
7*2 is 19.36 ksi. The relationship between creep stress and creep buckling failure
time of the composite at various temperatures is shown in the figure. The shift
factor a, is used for calculating buckling failure at various 7s. The results at the
glass transition temperature T (= 293°F) are also presented for comparison
purposes. Above the glass transition temperature, the creep buckling failure
becomes apparently more sensitive to the applied load. In other words, a small
change in the applied load leads to a large change in the creep buckling time at
T > T. In the case of an elastic bifurcation buckling, the critical load can be
ur, quely determined for a given composite structure. However, in the present
cr ep buckling studies, creep buckling loads depend upon the time-dependent
m ,terial properties. For more complex loading modes, the creep buckling results
arc shown in Figures 3-2-1 to 3-2-7 for both unidirectional and nmultilavered
angle-ply and cross-ply thermoplastic composite laminates.

3.2.b BIAXIAL COMPRESSION
In Figure 3-2-2 the relationship between the biaxial creep stresses a, (t.T)

and a2 (t,T) and the associated creep failure times t is shown. [The buckling
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Figure 3-2- 1. Creep buckling failure of A S41 J 1 thermoplastic-matrix composite panel under
pure shear loading at various temperatures (t I min.).
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Figure 3-2-4. Creep buckling failure of AS4/J1 thermoplastic-matrix composite angle ply

under pure shear loading at various temperatures (t 1 min.).
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Figure 3-2-5. Creep buckling failure of AS4/ Ji thermoplastic-matrix composite angle ply
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load ay' (t,T) is normalized with respect to a* which is the thermal elastic
buckling load (a* = 6.974 ksi) at T = 145°C under uniaxial compression. The
at in Figure 3-2-2 is the corresponding reference load of the same composite
panel under uniaxial compression along the x2 axis at T = 145°C and t = 100
min.] The top solid line in Figure 3-2-2 is the creep buckling solution for OFT =

0, i.e., a uniaxial compressive buckling in x, direction. The essential features of
the biaxial creep buckling in Figure 3-2-2 are similar to those in a pure shear
buckling case. At a given time t the introduction of a2' reduces the critical load
ary (t,T) and changes the mode shape. The cusps in Figure 3-2-2 made by two
solutions corresponding to different mode shapes have significant physical impor-
tance. One is that they are the points at which both of the two mode shapes are
admissible. The other is that sensitivity of the buckling time to the applied load
al (t,T) changes near these points. The most significant difference from the
elastic buckling is that in the case of elastic buckling, the mode shape change cor-
responds to the change in specific buckling characteristics of the structure. But in
the case of creep buckling, the mode shape change occurs along with the creep
buckling time.

3.2.c COMBINED AXIAL COMPRESSION AND SHEAR LOADING
In Figure 3-2-3, the relationship between the combined creep stresses al'

(t,T) and T' (t,T) and the associated creep failure time t is shown. (Thermal
elastic buckling loads or* are defined as that in the case 3.2.b.) The top solid line
is identical to that in Figure 3-2-2, i.e., the uniaxial compressive creep buckling
along the x, axis. Again, introduction of additional stress r '2 reduces the critical
applied load at any buckling time. The shear stress r* is the reference shear
stress which alone produces a 100 min. creep buckling time. In this loading case,
the reduction is not uniform even without a mode shape change. A parametric
study of the combined loading shows that the solution is much affected by the
presence of the shear stress than that of transverse compression.

3.3 Creep Buckling of Thermoplastic Composite Laminates

3.3.a ANGLE-PLY COMPOSITE LAMINATES

i) Pure Shear Loading
The unique feature of the solution for an angle-ply thermoplastic AS4/JI com-

posite laminate is similar to that of the unidirectional composite panel. (t* in
Figure 3-2-4 is 23.97 ksi for the angle-ply composite laminate T = 145°C.) A
comparison with Figure 3-2-1 shows that the creep buckling critical time is sig-
nificantly extended for a given applied load. It is hard to observe directly from
these figures because they are normalized by different factors. However. the creep
buckling property or sensitivity of the creep buckling time to the applied load is
also affected by the composite lamination variables.

ii) Biaxial Compression
The same changes can be seen in Figure 3-2-5. (a* in Figure 3-2-5 is 11.20



Elevated-Temperature Creep Buckling of Thermoplastic-Matrix Composites 199

ksi.) The mode shape change observed in the case of the AS4/JI unidirectional
composite does not appear for the angle-ply composite laminate. Figure 3-2-8
also shows that mode shape does not change in a [45/- 45/-45/451 composite
laminate.

iii) Combined Axial Compression and Shear
Creep buckling resistance is improved similarly as the above two cases. The re-

duction of the critical load due to presence of additional shear stress at a given
time is much more uniform compared to that of the unidirectional composite.
Thus, the creep buckling time of the angle-ply laminate will not reduce so drasti-
cally as the case of the unidirectional composite by the presence of the shear
stress.

3.3. b. CROSS-PLY COMPOSITE LAMINATES
In the case of cross-ply thermoplastic laminates, solutions for pure shear load-

ing and combined axial compression and shear loading are exactly the same as
those of the unidirectional composite. The reason is that the flexural rigidities in
Equation (2-3-2a) are not changed in the case of L, = L, but only those in Equa-
tion (2-3-2b) are affected. Consequently only the solutions which have the ad-
missible roots form the Equation (2-3-2b) have different values. It should be
noted that in the case of general rectangular laminates which have different L, and
L, all of the three solutions are different from those of unidirectional com-
posites.

2. 5I -03

Y- 0

2 S0 .Ja3

) 0.3y*

1.51(113 (s-1. T.-2)

I.0.6(*

5. 11[ 42 .y*/

0.6

.w.-1. n-2) 
.

I.001[99 4. SiE -11 9. $BE *|1 I .35(*42 1 . -62(4

Figure 3-2-8. Applied load which causes the 100 min. buckling time vs. angle 0 of the com-
posite angle ply [± 0], under biaxial compression at T = 293 0F (1450C).
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Figure 3-2-7 shows that the admissible solution from Equation (2-3-2b) repre-
sents much improved creep buckling resistance so that the failure life increases
significantly. Also, transition of the mode shape is much suppressed as compared
with those of the unidirectional composites.

34 Mode Shape

Figure 3-2-8 shows variations of the applied load which causes the 100 min.
buckling time in the biaxial compressive loading. The dotted line shows the ad-
missible border between the two possible modes. Figure 3-2-9 shows the similar
curves with Figure 3-2-8 in the case of the combined shear and compressive
loading. The dotted lines show the borders along which the admissible solution
changes between one from Equation (2-3-2a) and another from Equation (2-3-
2b) that means the change of mode shape. The off-axis angle 0 = 0' and 450
correspond to a unidirectional composite and angle-ply laminate respectively
which were discussed previously.

Figure 3-2-10 and 3-2-11 show how the large fraction of the shear component
can change the mode shapes drastically in the case of the combined axial com-
pression and shear loading that is not seen in the other loading case.

4. CONCLUSIONS

Based on the analytical methods developed for studying the creep buckling
failure of fiber composite laminates and the results obtained for the AS4/J

2.$11( -43

0.3 0.2

0.2r

I .SOC.,3O.r !

0. 93f6(.4

O.O66( -e '.5Sl( *e6 *.66OE 1*.35( 42 1 .II( .e2

I

FIgure 3-2-9. Applied load which causes the 100 min. buckling time vs. angle 0 of the corn.
posite angle ply [+O0Js under combined axial compression and shear at T = 2930 F
(145°0C).
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thermoplastic-matrix composite panels under various loading modes in the
elevated-temperature environment, the following conclusions can be made in this
study:

1. The elevated-temperature anisotropic viscoelastic constitutive equations of
the thermoplastic-matrix composite can be constructed, using the modified
Prony series expansion with the aid of a sequential unconstrained minimiza-
tion technique. The series solution for the composite time-temperature-
dependent properties matches well with the experimental data in a range of
five decade along the logarithmic scale.

2. The elevated-temperature viscoelastic creep buckling of the composite panels
is analyzed successfully by the use of the well-known Galerkin's method and
the inverse Laplace transformation technique. At a specific time creep buck-
ling loads of a thermoplastic composite laminate panel are determined at
various temperatures and under various combinations of biaxial loading
modes.

3. The creep buckling failure time of a thermoplastic composite panel under a
given load (e.g., uniaxial, shear or biaxial) is determined by a time-dependent
bifurcation analysis of the characteristic equations in conjuction with the in-
verse Laplace transformation.

4. At a given temperature, the shear creep buckling load of the unidirectional
AS4/J1 thermoplastic-matrix composite appears to decrease more rapidly.
with time than that of an angle-ply [-i-45I, composite laminate. As antici-
pated, the symmetric angle-ply [-+-45'J, laminate has a better resistance to
elevated temperature shear creep deformation and failure.

5. The elevated-temperature creep buckling resistance of a composite laminate
panel is strongly affected by the biaxial compressive loading. The introduc-
tion of a' in a compressively loaded (ug) composite plate significantly
reduces the axial creep buckling resistance in all three cases studied (i.e.,
pure shear, biaxial compression, and combined shear and compression). It
also changes the buckling shape modes in the cases of uniaxial composite and
cross-ply composite laminates. However, this phenomenon is not observed in
the [ 4i45°1, laminate at any temperatures.

6. The elevated-temperature creep buckling strength of a composite laminate
panel is also affected by the combined axial compression and shear loading.
The additional shear introduced to the axially loaded composite significantly
reduces the composite panel load bearing capacity. However, in both the uni-
directional composite and the [ A-45' ° , composite, mode shape changes at any
temperatures and load combinations are not observed.

7. In biaxially compressed thermoplastic angle-ply composite laminates (i.e.,
a 'I* 0, a2 * 0), fiber orientations affect not only the creep buckling load
level but also the mode shape associated with the failure. For example, in a
[0/- 0/- 0/01 AS4/JI composite laminate at 145°C subjected various combi-
nations of a '/a', the dominant mode shape during creep buckling of the
laminate with 0 < 33' is m = I and n = 1, whereas the 0 > 33' the buck-
ling mode shape is in = 1, n = 2 under any combination of a and a'.
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8. In the case of combined compression and shear, fiber orientation does not af-
fect the mode shape change significantly but the load level. Due to the pres-
ence of the shear, symmetry of the characteristics in which the load level is
affected by the fiber orientation along 0 = 90' is lost.

APPENDIX 1: SEQUENTIAL UNCONSTRAINED
MINIMIZATION TECHNIQUE (SUMT)

To express the experimental data of the anisotropic composite properties by
proper analytical expressions, a sequential unconstrained minimization technique
[9] which is one of the commonly used optimization techniques is employed in-
stead of the conventional Prony expansion method [18]. In the present study, 15
terms are used for the creep compliances and 13 terms for the time-dependent
Poisson's ratio. The number of the terms used is determined by two factors which
conflict with each other. An accurate solution in the desired time range requires
many terms but, on the contrary, most of the terms are used to fit the end portions
of the curve. And very often the resolutions are lost because of the limit of the
precision in the calculation.

The original objective function f for the present problem is

N

f = tFex(t) - Fmp(ti)12  (A-1-1)

where

Fex(ti) = experimental data for the compliances or the Poisson's ratio at t =

ti

F,,(ti) = the compliance function or Poisson's ratio calculated by the modified
Prony series solution

The constraint conditions should be expressed as follows to be used with SUMT
method:

g, > 0 (i = 1,N, ; N,: Number of constraint conditions)
(A-1-2)

For the compliances for example,

k(T) > 0 (A- -3a)

where 0, is the new variable introduced for convenience instead of g,. The rela-
tions between them are

3k(T) = exp [AIk(T)] (A-1-4)
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Besides this essential constraint condition, two additional constraint conditions
are necessary due to the reasons mentioned previously:

-C . (T) > 0 (k = l,n) (A-1-3b)

1 - fOk(T) > 0 (k = l,n) (A-l-3c)

Similar conditions are necessary for the constants in the expression for Poisson's
ratio.

A number of these constraint conditions can be automatically satisfied by mod-
ifying the objective function as

Nc

u = f + (ri/g) (A-1-5)

The summation term is the penalty term introduced instead of the constraint con-
ditions. By reducing r, gradually to zero during the iteration of the conventional
steepest descent method [9], the optimum solution for u car be obtained which
is actually the same solution forf with all of the constraint conditions.

The SUMT method resolves the complicacy to handle a number of constraint
conditions but still difficulties remain in selecting proper initial values and in re-
ducing the magnitude of the coefficients of the penalty terms appropriately which
are at present solved by trial and error.

APPENDIX 2

The explicit forms for the flexural rigidities for the angle-ply laminates are:
D = 2t' [E22 sin' 0 + 21 2 ,El1 + 2(1 - v12 v21 )G 66 1

3(1 - v, 2v21) sin 2 0 cos 2 0 + El, cos" 01

2t 3  [E.1 sin4 0 + 21v 2 El, + 2(1 - v12 v21)G 66 1D, = 3(1 - v12u21 ) sin 2 0 cos 2 0 + E22 cos4 01

2D [v2 1E,,(Utv4 O + cos4 0) + Iv 2 ,El, - 4
Dy = 3(1 - v12v21 ) (1 - v12v21 )G661 sin 2 0 cos 2 01

2t 3  [(E 22 + Ell - 2v 21 ) sin 2 0 cos 2 0 + G66
= 3(1 - 12v 21 ) (cos 2 0 - sin2 6)21

_t 3  [E 22 cos 0 sin 3 0 - El cos' 0 sin 0 +
D~. 2 -Iv 21 E1 + 2(1 - V12 P21 )G 6 6 I sin' cosO

.2(1 - V12,V) (sin 2 0 - cos 2 0)1

_t 3  [E 22 sin 0 cos3 0 - El, sin3 0 cos 0 +
D = 2(1 P j 21 E, + 2(1 - P 12 v21)G 66 I sin0 cosO

.2(1 - 121) (sin 2 0 - cos 2 0)]
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APPENDIX 3

The expanded form of Equation (2-3-2a) for the angle-ply laminates to solve
for the applied loads is:

(U0022 - 211122 + 12222)N 2 + (20/3) r2 + 2c3 )JA(I 0012 - 11112) - A22(1oo22

- 11122) + A3(101 22 - 11222) + A 4(100 21 - 211,12 + I222,)INxy

+ 16i'4 (2/3)t3( -1 + 2c3)1 IIooo2 + A20022 + AV0 222

+ A(I 00 20 + 211120 - 21,120) - 2AIA 210012 + 2AA 3 o012

+ 2AIA 4(10011 - 11111) - 2A2 A 3 1o, 22 - 2A2A4(loo2,

- 11121) + A 3 A 4 (10 1 21 - 112 2 )1 - [(3/16)LxLytSir4iZ[A5ooo2

+ 10022 + A7 0222 + A81 0 0 20 - 21,120 + 12220)

+ 2AsA 610012 + 2A5 A710 11 2 + 2AsA 8 (1001 1 + 11111)

+ 2A6 A710122 + 2A 6A8 (o 021 - 11121) + 2A7A8 (10121 - 1122)1

+ (10/3)t317r 2[As(10012 - 11112) A 6(100 22 - 11122)

+ A(1 0122 - 11222) + A8(100 21 - 21,121 + 12221)](NxIL - N,/L2)2

- (10022 - 21,122 + I2222)(N./Ll - N IL2 = 0 (A-3-1)

where

A, = sin' cos9 (sin 2 O/L2 + cos2 OIL2)

A2 = sin" cosI(cos 2 OIL2 + sin 2 O/L2)E ,,

A3 = sin6 cos6(cos2 0 - sin 2 0)(1/L. -I/L7)E,,

A4 = 2 sine cosO(cos 2 0 - sin 2 )(l/L - /L 2)
4 4p2 S 2 2 + #/L.4

A, = sin4 OIL? + 6 0iv26 cos 2 #/LL. + cos IL

A6 = (sin 4 OIL? + 6atv2 # cos2 #/LLY + cos4 O/L%)E,,

A 7 = 2E,, cos0 # sin OIL , + 2(cos 4 0 + sin 4 0 - 4 cos 2 0 sin 2 0)

X E,I(LL) 2 + 2E,, cos2 0 sin 2 OIL?
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A. = 4 cos2 0 sin2 0/L' + 4(cos4 0 + sin 4 O)/(LL,)2 + 4 cos2 0 sin' O/L'y

(A-3-2)

The expanded form for Equation (2-3-2b) is shown as Equation (2-3-4). The

explicit form of B, to B,, are:

B1 = sin 8 01000, + 4 sin 4 0 cos4 0E 1 o222 + 4E 1 (o0 1 21 + 11221) + 4(10020

- 21,120 + 12220)1 + El1 cos8 010022 + 4 cos2 0 sin6 0[E o101 1 2 + 21oot,

- 2111111 + 4E,, cos6 0 sin 2 O[ E
1

lo
0 122 + 210021 - 2111211

+ 2Ex cos' sin' 010012

B, = sin 4 0(sin 4 0 + cos' 0)E,,o,112 + sin 6 0 cos2 O[EtI 0012 + 10002

- 41(ooll - I ,)] + 2 cos2 0 sin 2 0(sin' 0 + cos' O)E(E,1 10 0 22

+ 2(10121 - 11221)] + 2 sin 4 0 cos4 0[E 110 12 2 + EIIIO112 - 4E 1 ( 0121

11221) + 2E,1 (100 2, - 11121) + 2(loot, - III.,) - 8(10020 - 21,120

+ 12220)] + cos' 0(sin' 0 + cos4 0(E, 01 22 + sin2 0 cos6 OE,, [ E o
1100 22

+ 10012 - 4(10021 - .11121)]

B3 = cos2 0 sin 6 0(E 1100 12 + 10002 - 21E 110112) + sin' 0(cos2 V

- sin 2 0)2(Iooj + III,,) + 2 cos4 0 sin 4 O[E,10 .22 + E.I 0 .. 2

- 2E 1 0 222 + 2E,1(1002, - 11,1,) + 2(1oo - 1,111) - 4E,1(1012,

- 1,22)1 + 2 cos2 0 sin 2 0(cos2 0 - sin 2 0)2 E, (P0121 - 1221)

+ 2(10020 - 21,120 + 12220)] + cos6 0 sin 2 OE,,(E 0022 + 100,2

- 2E,,1 0 122 ) + E1, cos' 0(cos' 0 - sin2 0)2(10021 - 11,2,)

B 4 = sin" OEII 00 1 2 + 2 cos2 0 sin 6 0(E, ,10
,
12 + 21oot, - 21,,,,)

+ sin 4 0 cos4 010002 + 2 cos2 0 sin 6 OE,,(E,, 01 2, + 21002, - 21112,)

+ 4 sin 4 0 1 o 10222 + 4Ecs10121 - 1122,) + 4(10020 - 211,20

+ 12220)1 + 2 cos' 0 sin 2 O(E,,l 0 1 1 2 + 21oo.. - 211,1,)
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+ sin" 0 cos" 0E,,Io22 + 2 cos6 0 sin2 E , , (E , , Io
1 22 + 210021 - 21,121)

+ coss 0E 110012

B, = (sin' 0 + cos4 O)E,1 o222 + 2 sin' 0 cos2 6(sin 4 6 + cos4 0)[EI1 0122

+Elo112 - 4E,o 012 , - 11221) + sin4 0 cos4 O[Elo10 0 22 + 10002

- 16(10020 - 21ll2o + 122 20)2E,Ioo12 - Wool, - 11111) - 8E,,(/o0 2,

- 11121)1

B6 = +2El, sin' 0 cos2 0(sin 4 0 + cos 4 0)(E,1 01 22 + 10112 - 2E ,10222)

+ E,,(sin2 0 - cos2 0) 2(sin 4 0 + cos4 0)(1o,21 - 11221)

+ sin4 6 cos4 0 [E S 10022 + 2E,110012 + 10002 - 2Ei 10122 - 2EIo12

- 4E1(o0021 - 11121) - 4(lool, - 11111) + 8E,(1 0121 - 11221)

+ cos2 0 sin2 0(cos 2 0 - sin 2 0 ) 2 [El(1 00 2, - 11121) + (100,1 - 11111)

-4(10020 - 211120 + 12220)]

B, = +sin 4 6 cos4 O[Eo10022 + 2E,110012 + 10002 + 4E,10 222

- 4E, 0112 - 4E 1 lo1 a4 ] + cos 6 sin2 0(cos2 6 - sin2 6)2[ E1,( 10021

- 11121) + (10011 - It,,,) - 2E,1 (10121 - 112201) + (cos 2 0

- sin 2 0)4(10020 - 21,120 + 12220)

B8 = sin4 0(sin4 6 + cos4 O)E1 0122 + E,1 sin6 6 cos2 0[E ,, 1002 + 100,2

- 4(10021 - 1112)1 + 2 cos' 0 sin 2 0(sin 4 0 + cos4 0)EIE,,1 10 222

+ 2(10121 - 122)1 + 2 sin4 6 cos 4 0[E ,10122 + Ello,2

- 4E,1(1012, - 11221) + 2E,(1 002, - 11121) + 2(10011 - /lilt)- 8(10020

- 21,1,20 + 12220)1 + cos4 0(sin 4 0 + cos 4 0)E,,1 0112

+ sin 2 0 cos 6 0[E,,10012 + 10002 - 4(/oo,, - /,,,,)]

B, = cos2 0 sin 6 0 E,,(E,,1 ooo2 + oo,2 - 21Eo10122) + sin 4 0(cos2 0
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- sin2 0)2E(o100 2, - 11121) + 2 cos' 0 sin' 0[E2,10 1 22 + E,,1 00 12

- 2 ,1 0222 + 2E,,(100 2, - 11121) + 2(1ooll - I,,,,) - 4E,,(10 1 2,

- 11221)1 + 2 cos 2 0 sin 2 0(cos 2 0 - sin 2 O)2[ E 1(10121 - 1122,)

+ 2(10020 - 211120 + 12220)1 - cos6 0 sin2 (E,1100, 2 + 10002

- 2EI 01 , 2) + cos4 0(cos 2 0 - sin 2 0)2(oo, -

Blo = sin' 0E,,100 22 + 4 sin' 0 cos' 0[E,10 222 + 4E,(101 21 - 1,221)

+ 4(10020 - 211120 + 12220)1 + cos 8 010022 + 4 cos2 6 sin6 0[E, 1 10122

+ 2E,,(100 2, - 1112)1 + 4 cos 6 0 sin 2 0 [ E 1 l
1 2 + 21oo - 21,,,]

+ 2E,, cos 4 0 sin' 610012

B1, = (l/Lx)[sin 4  (1o0012 - 11112) + 2 cos 2 0 sin 2 OE,( l
0 11 2 - 11122)

+ 4 cos 2 0 sin 2 (01021 - 21,121 + 12221) + Ell cos 4  (lo0022 11122)1

+ [8/(L.Ly)][(sin4 6 + cos4 0)E,1 (10122 - 11222)

+ 2 cos 2 0 sin 2  E ,(10112 - 1,122) - 4 cos 2 0 sin 2 0(10021 - 21,121

+ 12221)1 + [6/(LXLY)][cos 0 sin' OE,,(10022 - 11,22)

+ cos2 0 sin 2 0(101,2 - 1,122) - 2 cos2 0 sin 2 OE,,(10122 - 11222)

+ (cos 2 0 - sin 2 0)2(1002, - 21,121 + 1222,)] + (16/L4)[sin 4 0E,,(10 0 22

- 11122) + cos4 0(10012 - 11,12) + 2 cos 2 0 sin 2 OE,(1 0 12 2 -- 11222)

+ 4 cos 2 0 sin2 6(10021 - 21,121 + 1222)1

B12 = (16/L4)[sin 4 0(100,2 - 111,2) + 2 cos 2 0 sin2 OE,,( 101,2 - 11122)

+ 4 cos 2 0 sin2 0(10021 - 21,12, + 1222,) + E,, cos 4 0(10022 - 11122)]

+ [8/(LLv)[(sin + cos4 0 )E,,(10122 - 1,222)

+ 2 cos 2 0 sin 2 0 E,,( l o ,12 - 1,122) - 4 cos 2 0 sin 2 0(10021 - 21,121

+ 1222)1 + [16/(LxL)][cos2 0 sin2 E,,(10022 - 1,122)



210 Y. NAKAJO AND S. S. WANG

+ cos' 0 sin2 0( I o , ,  11122) - 2 cos' 0 sin 2 0E( l
0122 - 1,222)

+ (cos 2 0 - sin2 0)2(1021 - 21112, + 122201)] + (l/Ll)[sin 4 0E 1(10022

- 1122) + COS4 0(10012 - 1112) + 2 cos 2 0 sin 2 0E,( o101 22 - 11222)

+ 4 cos 2 0 sin 2 0(10021 - 21,121 + 12221)1

B 13 = 10022 - 211122 + 12222

B14 = cos 2 0 sin6 0 10002 + cos6 0 sin2 0E I 1 0 22 + cos 2 0 sin2 0(cos 2 0

sin 0) 2(E ,, 0 222 + 4E, 1(1o121 - 11221) + 4(10020 - 21,120 + 12220)]

- 2 cos 4 0 sin4 0E 10012 - 2 cos4 0 sin 2 0(cis 2 0 - sin 2 0)ElI [E o101 22

+ 2(10021 - 11121)] + 2 cos 2 0 sin4 0(cis 2 0 - sin 2 0)E 1 [E o10122

+ 2(1oo, - 111201

~s = cos 6 0 sin 2 0/o000 + cos2 0 sin 6 ELlo0,2 + cos 2 0 sin2 0(cos2 0
sin, si0) 102 i I102[i

Esin [E1 0222 + 4E,1(10121 - 1122,) + 4(10020 - 211o20 + 12220)]

- 2 cos" 0 sin4 0E o100 12 - 2 cos2 0 sin4 0(cis2 0 - sin2 O)E1[Eo10,22

+ 2(10021 - 11,1)] + 2 cos4 0 sin2 0(cis 2 0 - sin 2 0)E,,[E,,10122

+ 2(10021 - 11,2,)1

B16 = cos 4 0 sin4 010002 - cos 2 0 sin 2 0(cos2 0 + sin 2 O)looa

+ COS 4 0 sin 4 0E,,10022 + (cos' 0 sin 0 - cos 0 sin' 0)cos 0 sin 0(cos' 0

-sin 0)[E,10122 + 2E,1(1002, - 1121) + E1,10 t12 + 2(/ooll - II,,)1
- cos2 0(cos 2  sin ) + -

cs0sin2  - sn0)1El 10222 +4E,( P121 ' 1221)

+ 4(10020 - 21,120 + 12220)]

B, = (4ILX)cos 0 sin 3 0(100, 2 - 1,1,2) - cos3 0 sin OE,,(1002 - 11122)

+ cos 0 sin 0(cos2 0 - sin2 0)E,,(1,22 - 1,222) + 2 cos 0 sin 0(cosl 0

sin 0)(o0,, - 21,,12 + 12221)1(1/L2)1sin 0 cos' 0 - 11112)
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- sin3 0 cos OE 1 (1 0 22 - 11122) - cos 0 sin O(cos2 j - sin2 j)E,(l12

- 11222) - 2 cos 0 sin O(cos 2 6 - sin 2 0)(loo2l - 211121 + 1222)1

B 8 = (l/LX)[cos 0 sin3 (0012 - 11112) - cos3 0 sin OE,1 (10 0 2 2 - 11122)

+ cos 0 sin 0(cos 2 0 - sin2 0)E,(Io0 1 22 - 11222) + 2 cos 0 sin 6(cos 2 0

- sin 2 0)(10021 - 21121 + I 221,)](4/L2)[sin 6 cos 3 6(loo12 - 13112)

- sin 3 0 cos OE,( 00 22 - 11122) - cos 0 sin 0(cos 2 j - sin 2 j)EI JIo122

- 11222) - 2 cos 0 sin 0(cos 2 6 - sin 2 0)(10021 - 21,121 + 12221))

(A-3-3)

APPENDIX 4

The expanded form of Equation (2-3-2a) for the cross-ply laminate is:

4 4 ploo0002 + P210022 + P1 0222 + P4(10020 - 21,120 + 12220) + 2PP2 lo012

+ 2PP3 10 11 2 + 2PP 4(100 11 - 11,,) + 2P2 P 3 10 1 22 + 2PP 4(lo02 1

- 11121) + 2P3 P4 (10 1 21 - 11221)] - 57r [(NILX) - (NIL)I[PI(Io012

- 11112) + P 2 (100 22 - 11122) + P 3 (1012 2 - 11222) + P 4 (100 21 - 21,121

+ 12221)1 + [(NILX) - (N/L )1(o100 22 - 21,122 + 12222)

-[64 Nx/(9 7r2L.L)]2(l1002 - 21,122 + 12222) = 0 (A-4-1)

where
P1 = 2t3 /(3L 4) + 14t 3/(3L )

P2 = 14t 3 /(3L4) + 2t3 /(3L4)

P3 = 32E,,t/(3LXL )

P4 = 64t3/(3L2L2) (A-4-2)

The expanded form of Equation (2-3-2b) for the cross ply laminate is:

r4 [QQ 510002 + Q4QSoo2 + Q2Q610 222 + Q3Q(looo - 21,120 + 12220)

+ (QIQ8 + Q4Q)o10012 + (QIQ6 + QsQ2)lo,,2 + (QIQ 7
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+ QSQ 3)(1o 11 - 11111) + (Q4Q6 + Q8Q2)1o122 + (Q 4Q7

+ QSQ3)(loo12 - 1112 1) + (Q2Q7 + Q 6Q3 )( 0122 - 11222)]

- 7r2(NA/LX)[(4Q, + Qs)(oo12 - 11112) + (4Q4 + Q8)(Ioo22

- 11122) + (4Q2 + Q6)(10122 - 11222) + (4Q3 + Q7)(10021

- 211121 + 12221) - 7r2(N/L2)[(Q • + 4Q.)(l001 2 - 11112)

+ (Q4 + 4Q8)(1oo22 - 11122) + (Q2 + 4Q6)(I12; - 11222) + (Q 3

+ 4Q7)(Io021 - 211121 + 12221)] + [(4N2IL + 17NNyI(L2 L2)

+ 4N2/L](10 0 22 - 211122 + 1222) + [128Nxy(97r 2 .Ly)12(oo 22

- 211122 + 12222) = 0 (A-4-3)

where

Qi = (2t 3)(1/L 4 + 112/LY)

Q2 = 128t 3E/11(3L2L2)

Q3 = 256tI(3LXLY)

Q4 = (2t/3)E,1 (7/L 4 + 16/Ly)

Q5 = (2t 3/3)(16/L 4 + 7/L 4)
Q6 12t3El 2 2)

Q6 = 128 /E11 (3LCLY)
Qr= 5t 3  2 2)

7 = 256 (3LXLY)

Q8 = (2t 3/3)E,1(7/LX + 16/L 4) (A-4-4)

APPENDIX 5

ir42  (L F t - L - (8r 2 S , + N, ) c ..
42 L 2

= 0 (A-5-1)
- 3 2 (2 2SIl + N xy r 2L L y 4 2F, - L L ) 22
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-4( 2 'S2 1 + 1,,) C12

Y (.,, 2 N, , L Y) 27r0(A52

-32 (2 2 S +N )N 2LX LJ (2Fi 4N, - 2 N0 A--2
94 Lx Ly L

Using either one of two equations in above each equation, the mode shape ratio
can be obtained.

Equation to solve for the time-dependent mode ratio c, 2 c21 for the angle-ply
laminates is:

[9-r 2LxLy1128][(r 2/LX) sin4 /910012 + 2 cos2 0 sin 2 0E,lo12  + 4 cos0 0 sin 2 0

x (1oo - 11121) + El cos 0100221 + 18 (LXLY)1IE,(sin4 0

+ cos4 0)o 0122 + sin 2 0 cos /(E,11002 2 + 10012 - 410021 + 412112)1

/16 (L.LY)1tsn 0 cos2 0(E l o
022 + 10012 - 2El1 0 122)

+ (cos' 0 - sin 2 0)2(1 o02, - l,12,)11l6r'/(L4) 1sin 4 0 E 110o22

+ 2 cos2 0 sin 2 0E 1
, l0 12 2 + 4 cos2 0 sin'6(loo21 - 1121)

+ cos4 010.121 - 13/(2t3)I(NIL2 + 4NIL2)(10022 - I,,22)]ct

+ (2/3)r 2[(l/L')Icos 0 sin 3 010012 - cos' 0 sin gEt1!00 22

+ cos 0 sin O(cos2 0 - sin' 0)(E1o0 122 + 210021

- 21,121) I(/L )Icos 0 sin 3 010012 - cos3 0 sin gE,1 0022

- cos 0 sin 0(cos 2 0 - sin 2 0)(E i ,101 22 + 210.21 - 21112 ,)1c 2 1

- [3/(2t3 )]N.(10022 - l, 122)c2, = 0 (A-5-1)

Equation for the time-dependent mode ratio CI IIC22 of the cross-ply lami-
nates is:

ir2L.L,/4 [pP,(1 0 0 12 - 111,21 + P2 (10022 - 11122) + P3 (o 12 2 - 11222)

+ P 4(10021 - 21,, + 1222)1 - (Nx/LX + NY/L)(10022

- 21,,22 + 12222C)ItI - (32/9)N.y(1 00 22 - 211t22

+ 12222)c22 = 0 (A-5-2)
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Equation for the mode ratio c12/c2, of the cross-ply laminates is:

7r2L. L,/4[p21(4Q, + Qs)(10 012 - 11112) + (4Q4 + Q8)(Io022 - 11122) + (4Q2

+ QS)(o122 - 11222) + (4Q3 + Q7)(oo21 - 2 '1121 + 1222)1 - (N./LX

+ 4Ny/L2)(o 0 22 - 21,122 + 12222)1c 12 - (32/9)Nxy(1oo2 - 21,122

+ I2,22)c21 = 0 (A-5-3)

where the constants Pi and Q, are the same as those in Appendix 4.
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